Step 1: Calculate $\hat{O}|\psi\rangle$
$$\hat{O}|\psi\rangle = \hat{O}\left(\frac{1}{\sqrt{2}}\psi_1 + \frac{i}{\sqrt{2}}\psi_2\right)$$
$$= \frac{1}{\sqrt{2}}\hat{O}\psi_1 + \frac{i}{\sqrt{2}}\hat{O}\psi_2$$
$$= \frac{1}{\sqrt{2}}\psi_2 + \frac{i}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}(\psi_1 + \psi_2)$$
$$= \frac{1}{\sqrt{2}}\psi_2 + \frac{i}{2}(\psi_1 + \psi_2)$$
$$= \frac{i}{2}\psi_1 + \left(\frac{1}{\sqrt{2}} + \frac{i}{2}\right)\psi_2$$
Step 2: Calculate $\langle\psi|$
$$\langle\psi| = \frac{1}{\sqrt{2}}\langle\psi_1| + \frac{-i}{\sqrt{2}}\langle\psi_2|$$
(Note: complex conjugate of $i$ is $-i$)
Step 3: Calculate $\langle\psi|\hat{O}|\psi\rangle$
$$\langle\psi|\hat{O}|\psi\rangle = \left(\frac{1}{\sqrt{2}}\langle\psi_1| + \frac{-i}{\sqrt{2}}\langle\psi_2|\right)\left[\frac{i}{2}\psi_1 + \left(\frac{1}{\sqrt{2}} + \frac{i}{2}\right)\psi_2\right]$$
Using orthonormality $\langle\psi_i|\psi_j\rangle = \delta_{ij}$:
$$= \frac{1}{\sqrt{2}} \cdot \frac{i}{2}\langle\psi_1|\psi_1\rangle + \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} + \frac{i}{2}\right)\langle\psi_1|\psi_2\rangle$$
$$+ \frac{-i}{\sqrt{2}} \cdot \frac{i}{2}\langle\psi_2|\psi_1\rangle + \frac{-i}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} + \frac{i}{2}\right)\langle\psi_2|\psi_2\rangle$$
$$= \frac{i}{2\sqrt{2}} + 0 + 0 + \frac{-i}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} + \frac{i}{2}\right)$$
$$= \frac{i}{2\sqrt{2}} + \frac{-i}{2} + \frac{-i^2}{2\sqrt{2}}$$
$$= \frac{i}{2\sqrt{2}} - \frac{i}{2} + \frac{1}{2\sqrt{2}}$$
$$= \frac{1}{2\sqrt{2}} + \frac{i}{2\sqrt{2}} - \frac{i}{2}$$
$$= \frac{1}{2\sqrt{2}} + i\left(\frac{1}{2\sqrt{2}} - \frac{1}{2}\right)$$
$$= \frac{1}{2\sqrt{2}}\left(1 + i\left(1 - \sqrt{2}\right)\right)$$
$$= \frac{1}{2\sqrt{2}}\left(1 - i(\sqrt{2} - 1)\right)$$
Answer: (D) $\frac{1}{2\sqrt{2}}(1 - i(\sqrt{2} - 1))$
