Two identical concave mirrors each of focal length $ f $ are facing each other as shown. A glass slab of thickness $ t $ and refractive index $ n_0 $ is placed equidistant from both mirrors on the principal axis. A monochromatic point source $ S $ is placed at the center of the slab. For the image to be formed on $ S $ itself, which of the following distances between the two mirrors is/are correct:
A slope of a line is the conversion in y coordinate w.r.t. the conversion in x coordinate.
The net change in the y-coordinate is demonstrated by Δy and the net change in the x-coordinate is demonstrated by Δx.
Hence, the change in y-coordinate w.r.t. the change in x-coordinate is given by,
\(m = \frac{\text{change in y}}{\text{change in x}} = \frac{Δy}{Δx}\)
Where, “m” is the slope of a line.
The slope of the line can also be shown by
\(tan θ = \frac{Δy}{Δx}\)
Read More: Slope Formula
The equation for the slope of a line and the points are known to be a point-slope form of the equation of a straight line is given by:
\(y-y_1=m(x-x_1)\)
As long as the slope-intercept form the equation of the line is given by:
\(y = mx + b\)
Where, b is the y-intercept.