Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
A slope of a line is the conversion in y coordinate w.r.t. the conversion in x coordinate.
The net change in the y-coordinate is demonstrated by Δy and the net change in the x-coordinate is demonstrated by Δx.
Hence, the change in y-coordinate w.r.t. the change in x-coordinate is given by,
\(m = \frac{\text{change in y}}{\text{change in x}} = \frac{Δy}{Δx}\)
Where, “m” is the slope of a line.
The slope of the line can also be shown by
\(tan θ = \frac{Δy}{Δx}\)
Read More: Slope Formula
The equation for the slope of a line and the points are known to be a point-slope form of the equation of a straight line is given by:
\(y-y_1=m(x-x_1)\)
As long as the slope-intercept form the equation of the line is given by:
\(y = mx + b\)
Where, b is the y-intercept.