The acceleration of the system is given by:
\[ a = \frac{m_2 - m_1}{m_1 + m_2} g \]
Given \(a = \frac{g}{\sqrt{2}}\), substitute in the equation:
\[ \frac{g}{\sqrt{2}} = \frac{m_2 - m_1}{m_1 + m_2} g \]
Simplifying:
\[ \frac{1}{\sqrt{2}} = \frac{m_2 - m_1}{m_1 + m_2} \]
Cross-multiplying:
\[ \sqrt{2}(m_2 - m_1) = m_1 + m_2 \]
Rearranging:
\[ m_1(\sqrt{2} + 1) = m_2(\sqrt{2} - 1) \]
The ratio of masses is:
\[ \frac{m_1}{m_2} = \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32