For Paschen series: transition to \(n = 3\)
Minimum energy photon in Paschen series corresponds to \(n = 4 \rightarrow n = 3\)
\[
E = 13.6 \left( \frac{1}{3^2} - \frac{1}{4^2} \right) = 13.6 \left( \frac{1}{9} - \frac{1}{16} \right) = 13.6 \times \frac{7}{144} \approx 0.66 \text{ eV}
\]
But for the FIRST line in Paschen, use:
\[
E = 13.6 \left( \frac{1}{3^2} - \frac{1}{\infty} \right) = 13.6 \times \frac{1}{9} = 1.51 \text{ eV}
\]
Therefore, maximum energy of photon = 1.54 eV.
So, work function must be less than or equal to 1.54 eV.