\(\ell \alpha \varepsilon^{a} k ^{ b } T ^{ c } n ^{ d } q ^{ e }\)
(A) \(\ell=\sqrt{\frac{L^{-3} \times A^{2} T^{2}}{M^{-1} A^{2} T^{4} L^{-3} M^{1} L^{2} T^{-2} \theta^{-1} \theta}}\)
\(\ell=\sqrt{\frac{1}{L^{2}}}=\frac{1}{L}\)
(B) \(\ell =\sqrt{\frac{\varepsilon k_{B} T}{n q^{2}}}\)
\(=\sqrt{\frac{\left(M^{-1} A^{2} T^{4} L^{-3}\right) M^{1} L^{2} T^{-2} \theta^{-1} \theta}{L^{-3} A^{1} T^{2}}}\)
\(=\sqrt{L^{2}}=L\)
(C) \(\ell=\sqrt{\frac{A^{2} T^{2}}{M^{-1} A^{2} T^{4} L^{-3} L^{-2} M^{1} L^{2} T^{-2} \theta^{-1} \theta}}\)
(D) \(\ell=\sqrt{\frac{ A ^{2} T ^{2}}{ M ^{-1} A ^{2} T ^{4} L^{-3} L ^{-1} M ^{+1} L ^{2} T ^{-2} \theta^{-1} \theta}}\)
\(=\sqrt{L^{2}}= L\)
So, the correct option is (D): \(\ell=\sqrt{\left(\frac{q^{2}}{\operatorname{sn}^{1 / 3} k_{B} T}\right)}\)
Match List-I with List-II.
Choose the correct answer from the options given below :
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Dimensional Analysis is a process which helps verify any formula by the using the principle of homogeneity. Basically dimensions of each term of a dimensional equation on both sides should be the same.
Limitation of Dimensional Analysis: Dimensional analysis does not check for the correctness of value of constants in an equation.
Let us understand this with an example:
Suppose we don’t know the correct formula relation between speed, distance and time,
We don’t know whether
(i) Speed = Distance/Time is correct or
(ii) Speed =Time/Distance.
Now, we can use dimensional analysis to check whether this equation is correct or not.
By reducing both sides of the equation in its fundamental units form, we get
(i) [L][T]-¹ = [L] / [T] (Right)
(ii) [L][T]-¹ = [T] / [L] (Wrong)
From the above example it is evident that the dimensional formula establishes the correctness of an equation.