\(\ell \alpha \varepsilon^{a} k ^{ b } T ^{ c } n ^{ d } q ^{ e }\)
(A) \(\ell=\sqrt{\frac{L^{-3} \times A^{2} T^{2}}{M^{-1} A^{2} T^{4} L^{-3} M^{1} L^{2} T^{-2} \theta^{-1} \theta}}\)
\(\ell=\sqrt{\frac{1}{L^{2}}}=\frac{1}{L}\)
(B) \(\ell =\sqrt{\frac{\varepsilon k_{B} T}{n q^{2}}}\)
\(=\sqrt{\frac{\left(M^{-1} A^{2} T^{4} L^{-3}\right) M^{1} L^{2} T^{-2} \theta^{-1} \theta}{L^{-3} A^{1} T^{2}}}\)
\(=\sqrt{L^{2}}=L\)
(C) \(\ell=\sqrt{\frac{A^{2} T^{2}}{M^{-1} A^{2} T^{4} L^{-3} L^{-2} M^{1} L^{2} T^{-2} \theta^{-1} \theta}}\)
(D) \(\ell=\sqrt{\frac{ A ^{2} T ^{2}}{ M ^{-1} A ^{2} T ^{4} L^{-3} L ^{-1} M ^{+1} L ^{2} T ^{-2} \theta^{-1} \theta}}\)
\(=\sqrt{L^{2}}= L\)
So, the correct option is (D): \(\ell=\sqrt{\left(\frac{q^{2}}{\operatorname{sn}^{1 / 3} k_{B} T}\right)}\)
Match the LIST-I with LIST-II: 
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II 
Choose the correct answer from the options given below:
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Dimensional Analysis is a process which helps verify any formula by the using the principle of homogeneity. Basically dimensions of each term of a dimensional equation on both sides should be the same.
Limitation of Dimensional Analysis: Dimensional analysis does not check for the correctness of value of constants in an equation.
Let us understand this with an example:
Suppose we don’t know the correct formula relation between speed, distance and time,
We don’t know whether
(i) Speed = Distance/Time is correct or
(ii) Speed =Time/Distance.
Now, we can use dimensional analysis to check whether this equation is correct or not.
By reducing both sides of the equation in its fundamental units form, we get
(i) [L][T]-¹ = [L] / [T] (Right)
(ii) [L][T]-¹ = [T] / [L] (Wrong)
From the above example it is evident that the dimensional formula establishes the correctness of an equation.