\(\ell \alpha \varepsilon^{a} k ^{ b } T ^{ c } n ^{ d } q ^{ e }\)
(A) \(\ell=\sqrt{\frac{L^{-3} \times A^{2} T^{2}}{M^{-1} A^{2} T^{4} L^{-3} M^{1} L^{2} T^{-2} \theta^{-1} \theta}}\)
\(\ell=\sqrt{\frac{1}{L^{2}}}=\frac{1}{L}\)
(B) \(\ell =\sqrt{\frac{\varepsilon k_{B} T}{n q^{2}}}\)
\(=\sqrt{\frac{\left(M^{-1} A^{2} T^{4} L^{-3}\right) M^{1} L^{2} T^{-2} \theta^{-1} \theta}{L^{-3} A^{1} T^{2}}}\)
\(=\sqrt{L^{2}}=L\)
(C) \(\ell=\sqrt{\frac{A^{2} T^{2}}{M^{-1} A^{2} T^{4} L^{-3} L^{-2} M^{1} L^{2} T^{-2} \theta^{-1} \theta}}\)
(D) \(\ell=\sqrt{\frac{ A ^{2} T ^{2}}{ M ^{-1} A ^{2} T ^{4} L^{-3} L ^{-1} M ^{+1} L ^{2} T ^{-2} \theta^{-1} \theta}}\)
\(=\sqrt{L^{2}}= L\)
So, the correct option is (D): \(\ell=\sqrt{\left(\frac{q^{2}}{\operatorname{sn}^{1 / 3} k_{B} T}\right)}\)
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
Match List-I with List-II.
Choose the correct answer from the options given below :
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Dimensional Analysis is a process which helps verify any formula by the using the principle of homogeneity. Basically dimensions of each term of a dimensional equation on both sides should be the same.
Limitation of Dimensional Analysis: Dimensional analysis does not check for the correctness of value of constants in an equation.
Let us understand this with an example:
Suppose we don’t know the correct formula relation between speed, distance and time,
We don’t know whether
(i) Speed = Distance/Time is correct or
(ii) Speed =Time/Distance.
Now, we can use dimensional analysis to check whether this equation is correct or not.
By reducing both sides of the equation in its fundamental units form, we get
(i) [L][T]-¹ = [L] / [T] (Right)
(ii) [L][T]-¹ = [T] / [L] (Wrong)
From the above example it is evident that the dimensional formula establishes the correctness of an equation.