
Given data:
- Force applied on the thinner arm, \( F_2 = 10 \, \text{N} \)
- Diameter of the thinner arm, \( d_2 = 1.4 \, \text{cm} \)
- Diameter of the thicker arm, \( d_1 = 14 \, \text{cm} \)
Step 1: Calculating the Cross-Sectional Areas
The cross-sectional area of each arm is given by:
\[ A = \pi \left( \frac{d}{2} \right)^2. \]
For the thinner arm:
\[ A_2 = \pi \left( \frac{1.4}{2} \right)^2 = \pi (0.7)^2 \, \text{cm}^2. \]
For the thicker arm:
\[ A_1 = \pi \left( \frac{14}{2} \right)^2 = \pi (7)^2 \, \text{cm}^2. \]
Step 2: Applying Pascal’s Law
According to Pascal’s law, the pressure exerted on both arms must be equal for equilibrium:
\[ \frac{F_1}{A_1} = \frac{F_2}{A_2}. \]
Rearranging to find \( F_1 \):
\[ F_1 = F_2 \times \frac{A_1}{A_2}. \]
Step 3: Substituting the Values
Substituting the given values:
\[ F_1 = 10 \times \frac{\pi (7)^2}{\pi (0.7)^2}. \]
Simplifying:
\[ F_1 = 10 \times \frac{49}{0.49}. \]
Calculating:
\[ F_1 = 10 \times 100 = 1000 \, \text{N}. \]
Therefore, the force required to be applied on the surface of water in the thicker arm is \( 1000 \, \text{N} \).
Which of the following statements are true?
A. The same Bernoulli's equation is applicable to all the points in the flow field if the flow is irrotational.
B. The value of "Constant in the Bernoulli's equation" is different for different streamlines if the flow is rotational.
C. When a nozzle is fitted at the end of a long pipeline, the discharge increases.
D. The velocity of flow at the nozzle end is more than that in the case of a pipe without a nozzle, the head in both cases being the same.
Choose the most appropriate answer from the options given below:
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.

Which of the following options is correct?