Given:
- Mass of the box: \( m = 50 \, \text{kg} \)
- Coefficient of kinetic friction: \( \mu_k = 0.3 \)
- Acceleration due to gravity: \( g = 9.8 \, \text{m/s}^2 \)
Step 1: Calculate the Normal Force
The normal force \( N \) acting on the box is equal to the weight of the box, given by:
\[ N = mg = 50 \times 9.8 = 490 \, \text{N}. \]
Step 2: Calculate the Force of Kinetic Friction
The force of kinetic friction \( F_k \) is given by:
\[ F_k = \mu_k N. \]
Substituting the values:
\[ F_k = 0.3 \times 490 = 147 \, \text{N}. \]
Therefore, the force of kinetic friction is \( 147 \, \text{N} \).
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below: