We are given:
- Frequency \( f = 100\ \text{MHz} = 100 \times 10^6\ \text{Hz} \)
- We are to find the length of a half-wave dipole. Step 1: Use speed of light formula.
The wavelength \( \lambda \) of an electromagnetic wave is given by:
\[
\lambda = \frac{c}{f}
\]
where \( c = 3 \times 10^8\ \text{m/s} \) (speed of light in vacuum).
Substitute the values:
\[
\lambda = \frac{3 \times 10^8}{100 \times 10^6} = 3\ \text{meters}
\]
Step 2: Use half-wave dipole formula.
For a half-wave dipole antenna, the length \( L \) is:
\[
L = \frac{\lambda}{2}
\]
So,
\[
L = \frac{3}{2} = 1.5\ \text{meters}
\]
\[
\boxed{L = 1.5\ \text{m}}
\]