For the smooth inclined plane, the acceleration is:
\[a_{\text{smooth}} = g \sin 45^\circ = \frac{g}{\sqrt{2}}.\]
For the rough inclined plane, the acceleration is:
\[a_{\text{rough}} = g (\sin 45^\circ - \mu_k \cos 45^\circ) = \frac{g}{\sqrt{2}} (1 - \mu_k).\]
The time taken is inversely proportional to the square root of acceleration:
\[t_{\text{rough}} = n \cdot t_{\text{smooth}} \implies \sqrt{\frac{a_{\text{smooth}}}{a_{\text{rough}}}} = n.\]
Substituting:
\[\sqrt{\frac{\frac{g}{\sqrt{2}}}{\frac{g}{\sqrt{2}} (1 - \mu_k)}} = n.\]
Simplify:
\[\sqrt{\frac{1}{1 - \mu_k}} = n \implies 1 - \mu_k = \frac{1}{n^2}.\]
Solving for \(\mu_k\):
\[\mu_k = 1 - \frac{1}{n^2}.\]
Thus, the coefficient of kinetic friction is:
\[\mu_k = 1 - \frac{1}{n^2}.\]
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: