To find the coefficient of kinetic friction between the object and the surface of the inclined plane, we need to compare the time taken for the object to slide down a rough and a smooth inclined plane of the same angle, \(45^\circ\).
1. Time to slide down a smooth inclined plane:
\(t_1 = \sqrt{\frac{2d}{g/\sqrt{2}}} = \sqrt{\frac{2d\sqrt{2}}{g}}\)
2. Time to slide down a rough inclined plane:
\(t_2 = \sqrt{\frac{2d}{a'}} = \sqrt{\frac{2d\sqrt{2}}{g (1 - \mu)}}\)
3. Relating the times \(t_1\) and \(t_2\):
\(\sqrt{\frac{2d\sqrt{2}}{g (1 - \mu)}} = n \cdot \sqrt{\frac{2d\sqrt{2}}{g}}\)
4. Solving for \(\mu\):
\(\frac{2d\sqrt{2}}{g (1 - \mu)} = n^2 \cdot \frac{2d\sqrt{2}}{g}\)
\(\mu = 1 - \frac{1}{n^2}\)
Therefore, the correct option is \(1 - \frac{1}{n^2}\).
For the smooth inclined plane, the acceleration is:
\[a_{\text{smooth}} = g \sin 45^\circ = \frac{g}{\sqrt{2}}.\]
For the rough inclined plane, the acceleration is:
\[a_{\text{rough}} = g (\sin 45^\circ - \mu_k \cos 45^\circ) = \frac{g}{\sqrt{2}} (1 - \mu_k).\]
The time taken is inversely proportional to the square root of acceleration:
\[t_{\text{rough}} = n \cdot t_{\text{smooth}} \implies \sqrt{\frac{a_{\text{smooth}}}{a_{\text{rough}}}} = n.\]
Substituting:
\[\sqrt{\frac{\frac{g}{\sqrt{2}}}{\frac{g}{\sqrt{2}} (1 - \mu_k)}} = n.\]
Simplify:
\[\sqrt{\frac{1}{1 - \mu_k}} = n \implies 1 - \mu_k = \frac{1}{n^2}.\]
Solving for \(\mu_k\):
\[\mu_k = 1 - \frac{1}{n^2}.\]
Thus, the coefficient of kinetic friction is:
\[\mu_k = 1 - \frac{1}{n^2}.\]
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is 
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

