We use the formula for the total resistance \(R\) of the voltmeter:
\[ R = \frac{V}{I} - R_G \]
Where:
Substituting the values:
\[ R = \frac{100}{5 \times 10^{-3}} - 50 = 20000 - 50 = 19950 \, \Omega \]
Thus, the resistance required is \(19950 \, \Omega\), which corresponds to Option (3).
Assertion (A): The deflection in a galvanometer is directly proportional to the current passing through it.
Reason (R): The coil of a galvanometer is suspended in a uniform radial magnetic field.
Galvanometer:
A galvanometer is an instrument used to show the direction and strength of the current passing through it. In a galvanometer, a coil placed in a magnetic field experiences a torque and hence gets deflected when a current passes through it.
The name "galvanometer" is derived from the surname of Italian scientist Luigi Galvani, who in 1791 discovered that electric current makes a dead frog’s leg jerk.
A spring attached to the coil provides a counter torque. In equilibrium, the deflecting torque is balanced by the restoring torque of the spring, and we have the relation:
\[ NBAI = k\phi \]
Where:
As the current \( I_g \) that produces full-scale deflection in the galvanometer is very small, the galvanometer alone cannot be used to measure current in electric circuits.
To convert a galvanometer into an ammeter (to measure larger currents), a small resistance called a shunt is connected in parallel to the galvanometer.
To convert it into a voltmeter (to measure potential difference), a high resistance is connected in series with the galvanometer.
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: