Step 1: Formula for shunt resistance The shunt resistance \( R_s \) is given by:
\[ R_s = \frac{I_g R_g}{I - I_g}, \]
where:
Step 2: Substitute the values
\[ R_s = \frac{(20 \times 10^{-6}) \cdot 200}{(20 \times 10^{-3}) - (20 \times 10^{-6})}. \]
Simplify the numerator:
\[ (20 \times 10^{-6}) \cdot 200 = 4 \times 10^{-3}. \]
Simplify the denominator:
\[ (20 \times 10^{-3}) - (20 \times 10^{-6}) = 19.98 \times 10^{-3}. \]
Thus:
\[ R_s = \frac{4 \times 10^{-3}}{19.98 \times 10^{-3}} \approx 0.20 \, \Omega. \]
Final Answer: \( 0.20 \, \Omega. \)
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32