Step 1: Formula for shunt resistance The shunt resistance \( R_s \) is given by:
\[ R_s = \frac{I_g R_g}{I - I_g}, \]
where:
Step 2: Substitute the values
\[ R_s = \frac{(20 \times 10^{-6}) \cdot 200}{(20 \times 10^{-3}) - (20 \times 10^{-6})}. \]
Simplify the numerator:
\[ (20 \times 10^{-6}) \cdot 200 = 4 \times 10^{-3}. \]
Simplify the denominator:
\[ (20 \times 10^{-3}) - (20 \times 10^{-6}) = 19.98 \times 10^{-3}. \]
Thus:
\[ R_s = \frac{4 \times 10^{-3}}{19.98 \times 10^{-3}} \approx 0.20 \, \Omega. \]
Final Answer: \( 0.20 \, \Omega. \)
Galvanometer:
A galvanometer is an instrument used to show the direction and strength of the current passing through it. In a galvanometer, a coil placed in a magnetic field experiences a torque and hence gets deflected when a current passes through it.
The name "galvanometer" is derived from the surname of Italian scientist Luigi Galvani, who in 1791 discovered that electric current makes a dead frog’s leg jerk.
A spring attached to the coil provides a counter torque. In equilibrium, the deflecting torque is balanced by the restoring torque of the spring, and we have the relation:
\[ NBAI = k\phi \]
Where:
As the current \( I_g \) that produces full-scale deflection in the galvanometer is very small, the galvanometer alone cannot be used to measure current in electric circuits.
To convert a galvanometer into an ammeter (to measure larger currents), a small resistance called a shunt is connected in parallel to the galvanometer.
To convert it into a voltmeter (to measure potential difference), a high resistance is connected in series with the galvanometer.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: