\(\frac{dy}{dx} - \left( \frac{\sin 2x}{1 + \cos^2 x} \right) y = \sin x\)
The integrating factor is:
I.F. = \(1 + \cos^2 x\)
Multiply through by the integrating factor:
\(y \cdot (1 + \cos^2 x) = \int (\sin x) dx\)
Integrate:
\(y \cdot (1 + \cos^2 x) = -\cos x + C\)
At \(x = 0\):
\(-\cos 0 + C = 0 \Rightarrow C = 1\)
\(y \left( \frac{\pi}{2} \right) = 1\)
So, the correct answer is: 1
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).