From the given conditions, we have two equations: \[ f(1) = a(1) + b = 1 \quad \Rightarrow \quad a + b = 1, \tag{1} \] \[ f(2) = a(2) + b = 3 \quad \Rightarrow \quad 2a + b = 3. \tag{2} \] Solving equations (1) and (2) simultaneously:
From equation (1): \( b = 1 - a \).
Substitute this into equation (2): \[ 2a + (1 - a) = 3 \quad \Rightarrow \quad 2a + 1 - a = 3 \quad \Rightarrow \quad a = 2. \]
Substituting \( a = 2 \) into equation (1): \[ 2 + b = 1 \quad \Rightarrow \quad b = -1. \]
Thus, the function is: \[ f(x) = 2x - 1. \]
One-one (Injective): A function is one-one if distinct inputs lead to distinct outputs. Since \( f(x) = 2x - 1 \) is a linear function with a non-zero slope, it is one-one.
Onto (Surjective): A function is onto if for every element \( y \in R \), there exists \( x \in R \) such that \( f(x) = y \). For \( f(x) = 2x - 1 \), for any \( y \in R \), we can solve \( y = 2x - 1 \) for \( x \), which gives \( x = \frac{y + 1}{2} \). Hence, the function is onto.
Answer: The function \( f(x) = 2x - 1 \) is both one-one and onto. \bigskip
A compound (A) with molecular formula $C_4H_9I$ which is a primary alkyl halide, reacts with alcoholic KOH to give compound (B). Compound (B) reacts with HI to give (C) which is an isomer of (A). When (A) reacts with Na metal in the presence of dry ether, it gives a compound (D), C8H18, which is different from the compound formed when n-butyl iodide reacts with sodium. Write the structures of A, (B), (C) and (D) when (A) reacts with alcoholic KOH.