From the given conditions, we have two equations: \[ f(1) = a(1) + b = 1 \quad \Rightarrow \quad a + b = 1, \tag{1} \] \[ f(2) = a(2) + b = 3 \quad \Rightarrow \quad 2a + b = 3. \tag{2} \] Solving equations (1) and (2) simultaneously:
From equation (1): \( b = 1 - a \).
Substitute this into equation (2): \[ 2a + (1 - a) = 3 \quad \Rightarrow \quad 2a + 1 - a = 3 \quad \Rightarrow \quad a = 2. \]
Substituting \( a = 2 \) into equation (1): \[ 2 + b = 1 \quad \Rightarrow \quad b = -1. \]
Thus, the function is: \[ f(x) = 2x - 1. \]
One-one (Injective): A function is one-one if distinct inputs lead to distinct outputs. Since \( f(x) = 2x - 1 \) is a linear function with a non-zero slope, it is one-one.
Onto (Surjective): A function is onto if for every element \( y \in R \), there exists \( x \in R \) such that \( f(x) = y \). For \( f(x) = 2x - 1 \), for any \( y \in R \), we can solve \( y = 2x - 1 \) for \( x \), which gives \( x = \frac{y + 1}{2} \). Hence, the function is onto.
Answer: The function \( f(x) = 2x - 1 \) is both one-one and onto. \bigskip
During the festival season, a mela was organized by the Resident Welfare Association at a park near the society. The main attraction of the mela was a huge swing, which traced the path of a parabola given by the equation:\[ x^2 = y \quad \text{or} \quad f(x) = x^2 \]
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |