The half-life of a radioactive nucleus is 5 years. The fraction of the original sample that would decay in 15 years is:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
The amount of time taken for half of a particular sample to react is known as Half-life.
We can describe exponential decay by any of the three formulas