When a freely falling body eventually stops on reaching the ground, its kinetic energy gets converted into heat energy (as the body and ground become warm due to collision), sound energy and into potential energy (due to change of shape or deformation).

Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Fig. 9.27). Prove that ∠ACP = ∠ QCD

ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.14). Show that
(i) ∠A = ∠B
(ii) ∠C = ∠D
(iii) ∆ABC ≅ ∠∆BAD
(iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
The work and kinetic energy principle (also known as the work-energy theorem) asserts that the work done by all forces acting on a particle equals the change in the particle's kinetic energy. By defining the work of the torque and rotational kinetic energy, this definition can be extended to rigid bodies.
The change in kinetic energy KE is equal to the work W done by the net force on a particle is given by,
W = ΔKE = ½ mv2f − ½ mv2i
Where,
vi → Speeds of the particle before the application of force
vf → Speeds of the particle after the application of force
m → Particle’s mass
Note: Energy and Momentum are related by, E = p2 / 2m.