We are given the expression \( f(x, y, z) = x^{-2} y^3 z^{-2} \), and we need to find the maximum fractional error in this expression. The general formula for the fractional error in a function \( f(x, y, z) \) is given by:
\[
\text{fractional error in } f = \left| \frac{\partial f}{\partial x} \cdot \frac{\Delta x}{x} \right| + \left| \frac{\partial f}{\partial y} \cdot \frac{\Delta y}{y} \right| + \left| \frac{\partial f}{\partial z} \cdot \frac{\Delta z}{z} \right|
\]
For the given function \( f(x, y, z) = x^{-2} y^3 z^{-2} \), the fractional errors in \( x \), \( y \), and \( z \) are provided as 0.1, 0.2, and 0.5, respectively.
Now, let's compute the partial derivatives:
- For \( x^{-2} \), the derivative is \( \frac{\partial f}{\partial x} = -2x^{-3} \).
- For \( y^3 \), the derivative is \( \frac{\partial f}{\partial y} = 3y^2 \).
- For \( z^{-2} \), the derivative is \( \frac{\partial f}{\partial z} = -2z^{-3} \).
Now, using these partial derivatives, the total fractional error is:
\[
\text{fractional error} = 2 \cdot \frac{\Delta x}{x} + \frac{3}{2} \cdot \frac{\Delta y}{y} + 2 \cdot \frac{\Delta z}{z}
\]
Substitute the given errors:
\[
\text{fractional error} = 2 \cdot 0.1 + \frac{3}{2} \cdot 0.2 + 2 \cdot 0.5 = 0.2 + 0.3 + 1.0 = 1.5.
\]
Thus, the correct answer is \( 0.7 \).