Case I: The four digits are \(2, 2, 2, 3.\)
Total number of arrangements \(= \frac {4!}{3!} = 4\)
Case II: The four digits are \(2, 2, 3, 3.\)
Total number of arrangement \(= \frac {4!}{2!.2!} = 6\)
Case III: The four digits are \(2, 3, 3, 3.\)
Total number of arrangements \(=\frac {4!}{3!} = 4\)
Case IV: The four digits are \(2, 3, 3, 1.\)
Total number of arrangements \(= \frac {4!}{2!} = 12\)
Case V: The four digits are \(2, 2, 3, 1.\)
Total number of arrangements \(= \frac {4!}{2!} = 12\)
Case VI: The four digits are \(2, 3, 1, 1.\)
Total number of arrangements \(= \frac {4!}{2!} = 12\)
So, total possible ways \(= 12+12+12+4+6+4 = 50\) ways.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: