A few species are given in Column I. Column II contains the hybrid orbitals used by the central atom of the species for bonding.
The CORRECT match for the species to their central atom hybridization is:
(Given: Atomic numbers of B: 5; C: 6; O: 8; F: 9; P: 15; Cl: 17; I: 53)
Consider the following statements:
Statement-I: The products formed when diborane burns in air are \({B}_2{O}_3\), \({H}_2\), and \({O}_2\).
Statement-II: Hybridization of boron atom in orthoboric acid is \(sp^2\). The correct answer is:
Given below are two statements:
Statement (II): Structure III is most stable, as the orbitals having the lone pairs are axial, where the $ \ell p - \beta p $ repulsion is minimum. In light of the above statements, choose the most appropriate answer from the options given below:
Match list-I with list-II and choose the correct option.
The \( F_{121} \) value of a known microorganism with \( Z \) value of \( 11^\circ C \) is 2.4 min for 99.9999% inactivation. For a 12D inactivation of the said microorganism at \( 143^\circ C \), the \( F \) value (in min) is .......... (rounded off to 3 decimal places)
Three villages P, Q, and R are located in such a way that the distance PQ = 13 km, QR = 14 km, and RP = 15 km, as shown in the figure. A straight road joins Q and R. It is proposed to connect P to this road QR by constructing another road. What is the minimum possible length (in km) of this connecting road?
Note: The figure shown is representative.
For the clock shown in the figure, if
O = O Q S Z P R T, and
X = X Z P W Y O Q,
then which one among the given options is most appropriate for P?