Step 1: Understand the physical condition
The dust particle is suspended in air, meaning the net force acting on it is zero.
So, the upward electric force equals the downward gravitational force:
\[
F_{\text{electric}} = F_{\text{gravity}}
\Rightarrow qE = mg
\]
Step 2: Convert given mass to kilograms
\[
m = 4 \times 10^{-12} \, \text{mg} = 4 \times 10^{-12} \times 10^{-6} \, \text{kg} = 4 \times 10^{-18} \, \text{kg}
\]
Step 3: Use the balance of forces to find charge
\[
q = \frac{mg}{E} = \frac{4 \times 10^{-18} \times 10}{50} = \frac{4 \times 10^{-17}}{50} = 8 \times 10^{-19} \, \text{C}
\]
Step 4: Find number of electrons removed
Charge of one electron: \( e = 1.6 \times 10^{-19} \, \text{C} \)
\[
n = \frac{q}{e} = \frac{8 \times 10^{-19}}{1.6 \times 10^{-19}} = 5
\]
Final Answer: 5 electrons