Question:

A drug suspension decomposes by zero-order kinetics with a rate constant of \(2 \, \text{mg} \, \text{mL}^{-1} \, \text{month}^{-1}\). If the initial concentration is \(100 \, \text{mg} \, \text{mL}^{-1}\), what is the shelf life (\(t_{10\%}\))?

Updated On: Feb 13, 2025
  • 2 months
  • 3 months
  • 4 months
  • 5 months 
     

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Understanding zero-order kinetics. - The formula for zero-order shelf life (\( t_{10\%} \)) is: \[ t_{10\%} = \frac{0.1 C_0}{k} \] where: - \( C_0 = 100 \, \text{mg} \, \text{mL}^{-1} \) (initial concentration), - \( k = 2 \, \text{mg} \, \text{mL}^{-1} \, \text{month}^{-1} \). 

Step 2: Substituting values. \[ t_{10\%} = \frac{0.1 \times 100}{2} = \frac{10}{2} = 5 \, \text{months} \] 

Step 3: Correcting for shelf life definition. - The correct formula is: \[ t_{10\%} = \frac{0.1 C_0}{k} = \frac{10}{2} = 5 \, \text{months} \] 

Was this answer helpful?
0
0