Question:

A disc of moment of inertia \( 3.5 \, \text{kg m}^2 \) is rotating at \( 30 \, \text{rad/s} \). Torque to stop it in 5 seconds is:

Show Hint

To compute torque when stopping rotation: \( \tau = I \cdot \frac{\omega}{t} \)
Updated On: May 13, 2025
  • \( 84 \, \text{Nm} \)
  • \( 42 \, \text{Nm} \)
  • \( 10.5 \, \text{Nm} \)
  • \( 21 \, \text{Nm} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Use: \( \tau = I \alpha \), where \( \alpha = \frac{\omega}{t} = \frac{30}{5} = 6 \, \text{rad/s}^2 \)
\[ \tau = 3.5 \cdot 6 = 21 \, \text{Nm} \]
Was this answer helpful?
0
0