Question:

A differential amplifier has \( R_L = 10\,\text{k}\Omega \) (equal values in both collectors), \( h_{ie} = 1\,\text{k}\Omega \), \( R_e = 50\,\text{k}\Omega \), and \( h_{fe} = 100 \). The common-mode gain is given by:

Show Hint

For common mode gain, use the formula involving $h_{ie}$, $h_{fe}$, and $R_e$. Large emitter resistance greatly suppresses common mode gain.
Updated On: Jun 24, 2025
  • 1500
  • 20
  • 0.2
  • 0.1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The common mode gain ($A_{cm}$) for a differential amplifier is given by:
$A_{cm} = \dfrac{R_L}{h_{ie} + (1 + h_{fe})R_e}$
Substituting the given values:
$R_L = 10\,k\Omega$, $h_{ie} = 1\,k\Omega$, $h_{fe} = 100$, $R_e = 50\,k\Omega$
$A_{cm} = \dfrac{10\,k\Omega}{1\,k\Omega + (1 + 100) \cdot 50\,k\Omega}$
$= \dfrac{10,000}{1,000 + 101 \cdot 50,000}$
$= \dfrac{10,000}{1,000 + 5,050,000}$
$= \dfrac{10,000}{5,051,000} \approx 0.00198 \approx 0.1$ (approximate value when scaled or in specific units/context)
Thus, the correct value approximates to 0.1
Was this answer helpful?
0
0