Let the radius and slant height of the conical mound be \( r \) and \( l \), respectively.
Step 1:
The volume of the cylindrical bucket is given by the formula:
\[
V_{\text{cylinder}} = \pi r_{\text{cylinder}}^2 h_{\text{cylinder}},
\]
where \( r_{\text{cylinder}} = 18 \, \text{cm} \) and \( h_{\text{cylinder}} = 32 \, \text{cm} \).
\[
V_{\text{cylinder}} = \pi \times (18)^2 \times 32 = \pi \times 324 \times 32 = 10368 \pi \, \text{cm}^3.
\]
Step 2:
The volume of the conical mound is given by:
\[
V_{\text{cone}} = \frac{1}{3} \pi r_{\text{cone}}^2 h_{\text{cone}},
\]
where \( h_{\text{cone}} = 24 \, \text{cm} \). Since the volume of the sand remains the same, we equate the volumes:
\[
10368 \pi = \frac{1}{3} \pi r_{\text{cone}}^2 \times 24.
\]
Cancel \( \pi \) from both sides:
\[
10368 = \frac{1}{3} r_{\text{cone}}^2 \times 24.
\]
Simplify:
\[
10368 = 8 r_{\text{cone}}^2 \quad \Rightarrow \quad r_{\text{cone}}^2 = \frac{10368}{8} = 1296 \quad \Rightarrow \quad r_{\text{cone}} = \sqrt{1296} = 36 \, \text{cm}.
\]
Step 3:
Now, use the Pythagorean theorem to find the slant height \( l \) of the cone.
\[
l = \sqrt{r_{\text{cone}}^2 + h_{\text{cone}}^2} = \sqrt{36^2 + 24^2} = \sqrt{1296 + 576} = \sqrt{1872}.
\]
Simplify:
\[
l = \sqrt{1872} \approx 43.27 \, \text{cm}.
\]
Conclusion:
The radius of the conical mound is \( 36 \, \text{cm} \) and the slant height is approximately \( 43.27 \, \text{cm} \).