Since the cyclist travels along the circumference from point P to point S, which are opposite ends of the diameter of the circle, we can visualize the displacement as the straight-line distance between P and S.
1. Determine the Displacement:
Using the Pythagorean theorem, we find:
\[ \text{Displacement} = R\sqrt{2} = 2\sqrt{2} = \sqrt{8} \, \text{km}. \]
Answer: \(\sqrt{8} \, \text{km}\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: