

Since the cyclist travels along the circumference from point P to point S, which are opposite ends of the diameter of the circle, we can visualize the displacement as the straight-line distance between P and S.
1. Determine the Displacement:
Using the Pythagorean theorem, we find:
\[ \text{Displacement} = R\sqrt{2} = 2\sqrt{2} = \sqrt{8} \, \text{km}. \]
Answer: \(\sqrt{8} \, \text{km}\)
In case of vertical circular motion of a particle by a thread of length \( r \), if the tension in the thread is zero at an angle \(30^\circ\) as shown in the figure, the velocity at the bottom point (A) of the vertical circular path is ( \( g \) = gravitational acceleration ). 
Find speed given to particle at lowest point so that tension in string at point A becomes zero. 



A particle of mass \(m\) falls from rest through a resistive medium having resistive force \(F=-kv\), where \(v\) is the velocity of the particle and \(k\) is a constant. Which of the following graphs represents velocity \(v\) versus time \(t\)? 