Step 1: Apply Newton’s Law of Cooling.
According to Newton’s law of cooling, the rate of cooling is proportional to the temperature difference between the object and the surroundings.
\[
\frac{dT}{dt} = -k (T - T_s)
\]
where:
\( T \) = temperature of the body,
\( T_s \) = surrounding temperature,
\( k \) = proportionality constant.
Step 2: Integrate the equation.
Integrating between initial temperature \( T_1 \) and final temperature \( T_2 \):
\[
\int_{T_1}^{T_2} \frac{dT}{T - T_s} = -k \int_0^t dt
\]
\[
\ln \frac{T_2 - T_s}{T_1 - T_s} = -k t
\]
\[
k = \frac{1}{t} \ln \frac{T_1 - T_s}{T_2 - T_s}
\]
Step 3: Case 1 — Cooling from 90°C to 80°C.
For the first cooling period:
\[
T_s = 20^\circ C, \, T_1 = 90^\circ C, \, T_2 = 80^\circ C
\]
Hence,
\[
k = \frac{1}{t} \ln \frac{90 - 20}{80 - 20} = \frac{1}{t} \ln \frac{70}{60} = \frac{1}{t} \ln \frac{7}{6}.
\]
Step 4: Case 2 — Cooling from 80°C to 60°C.
Let the time taken for this cooling be \( t_2 \).
Using the same formula:
\[
k = \frac{1}{t_2} \ln \frac{80 - 20}{60 - 20} = \frac{1}{t_2} \ln \frac{60}{40} = \frac{1}{t_2} \ln \frac{3}{2}.
\]
Since \( k \) is the same for both cases, we equate the two expressions for \( k \):
\[
\frac{1}{t} \ln \frac{7}{6} = \frac{1}{t_2} \ln \frac{3}{2}.
\]
\[
t_2 = t \frac{\ln(3/2)}{\ln(7/6)}.
\]
Step 5: Simplify the ratio.
Using logarithmic approximation or calculator values:
\[
\ln(3/2) = 0.405, \quad \ln(7/6) = 0.154.
\]
\[
\frac{\ln(3/2)}{\ln(7/6)} = \frac{0.405}{0.154} \approx 2.63 \approx \frac{13}{5}.
\]
\[
t_2 = \frac{13}{5} t.
\]
Final Answer:
\[
\boxed{t_2 = \frac{13}{5}t}
\]