To solve the problem of determining the force exerted by the ball on the player's hand, we can use the impulse-momentum theorem. The impulse experienced by an object is equal to the change in momentum of the object. The formula we use is:
\(F \cdot \Delta t = \Delta p\)
The change in momentum \(\Delta p\) is given by:
\(\Delta p = m(v_f - v_i)\)
Substituting the values:
\(\Delta p = 0.12 \cdot (0 - 25) = -3 \, \text{kg} \cdot \text{m/s}\)
According to the impulse-momentum theorem:
\(F \cdot 0.1 = -3\)
Solve for \(F\):
\(F = \frac{-3}{0.1} = -30 \, \text{N}\)
The negative sign indicates the force is in the opposite direction of the initial motion, but since we are asked for the magnitude, it is 30 N. Therefore, the correct answer is:
30
Given: - Mass of the ball: \( m = 120 \, \text{g} = 0.12 \, \text{kg} \) - Initial speed of the ball: \( v = 25 \, \text{m/s} \) - Time taken to catch the ball: \( t = 0.1 \, \text{s} \) - Final speed of the ball: \( v_f = 0 \, \text{m/s} \) (since the ball is caught and comes to rest)
The change in momentum (\( \Delta p \)) of the ball is given by:
\[ \Delta p = m \cdot (v_f - v) \]
Substituting the given values:
\[ \Delta p = 0.12 \cdot (0 - 25) \, \text{kg} \cdot \text{m/s} \] \[ \Delta p = -3 \, \text{kg} \cdot \text{m/s} \]
The negative sign indicates a decrease in momentum.
The force exerted by the ball on the hand of the player is given by Newton’s second law:
\[ F = \frac{\Delta p}{t} \]
Substituting the values:
\[ F = \frac{-3}{0.1} \, \text{N} \] \[ F = -30 \, \text{N} \]
The magnitude of the force is:
\[ |F| = 30 \, \text{N} \]
The magnitude of the force exerted by the ball on the hand of the player is \( 30 \, \text{N} \).
Which of the following statements is true regarding static friction?
The driver sitting inside a parked car is watching vehicles approaching from behind with the help of his side view mirror, which is a convex mirror with radius of curvature \( R = 2 \, \text{m} \). Another car approaches him from behind with a uniform speed of 90 km/hr. When the car is at a distance of 24 m from him, the magnitude of the acceleration of the image of the side view mirror is \( a \). The value of \( 100a \) is _____________ m/s\(^2\).
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.

Which of the following options is correct?