Given: - Mass of the ball: \( m = 120 \, \text{g} = 0.12 \, \text{kg} \) - Initial speed of the ball: \( v = 25 \, \text{m/s} \) - Time taken to catch the ball: \( t = 0.1 \, \text{s} \) - Final speed of the ball: \( v_f = 0 \, \text{m/s} \) (since the ball is caught and comes to rest)
The change in momentum (\( \Delta p \)) of the ball is given by:
\[ \Delta p = m \cdot (v_f - v) \]
Substituting the given values:
\[ \Delta p = 0.12 \cdot (0 - 25) \, \text{kg} \cdot \text{m/s} \] \[ \Delta p = -3 \, \text{kg} \cdot \text{m/s} \]
The negative sign indicates a decrease in momentum.
The force exerted by the ball on the hand of the player is given by Newton’s second law:
\[ F = \frac{\Delta p}{t} \]
Substituting the values:
\[ F = \frac{-3}{0.1} \, \text{N} \] \[ F = -30 \, \text{N} \]
The magnitude of the force is:
\[ |F| = 30 \, \text{N} \]
The magnitude of the force exerted by the ball on the hand of the player is \( 30 \, \text{N} \).
The driver sitting inside a parked car is watching vehicles approaching from behind with the help of his side view mirror, which is a convex mirror with radius of curvature \( R = 2 \, \text{m} \). Another car approaches him from behind with a uniform speed of 90 km/hr. When the car is at a distance of 24 m from him, the magnitude of the acceleration of the image of the side view mirror is \( a \). The value of \( 100a \) is _____________ m/s\(^2\).