Given: - Mass of the ball: \( m = 120 \, \text{g} = 0.12 \, \text{kg} \) - Initial speed of the ball: \( v = 25 \, \text{m/s} \) - Time taken to catch the ball: \( t = 0.1 \, \text{s} \) - Final speed of the ball: \( v_f = 0 \, \text{m/s} \) (since the ball is caught and comes to rest)
The change in momentum (\( \Delta p \)) of the ball is given by:
\[ \Delta p = m \cdot (v_f - v) \]
Substituting the given values:
\[ \Delta p = 0.12 \cdot (0 - 25) \, \text{kg} \cdot \text{m/s} \] \[ \Delta p = -3 \, \text{kg} \cdot \text{m/s} \]
The negative sign indicates a decrease in momentum.
The force exerted by the ball on the hand of the player is given by Newton’s second law:
\[ F = \frac{\Delta p}{t} \]
Substituting the values:
\[ F = \frac{-3}{0.1} \, \text{N} \] \[ F = -30 \, \text{N} \]
The magnitude of the force is:
\[ |F| = 30 \, \text{N} \]
The magnitude of the force exerted by the ball on the hand of the player is \( 30 \, \text{N} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: