\[
\text{Stress, } \sigma = \frac{F}{A} = \frac{22 \, \text{N}}{1 \times 10^{-6} \, \text{m}^2} = 2.2 \times 10^{7} \, \text{N/m}^2
\]
\[
\text{Longitudinal strain, } \epsilon = \frac{\sigma}{E} = \frac{2.2 \times 10^{7} \, \text{N/m}^2}{1.1 \times 10^{11} \, \text{Nm}^{-2}} = 2 \times 10^{-4}
\]
\[
\text{Lateral strain, } \epsilon_{\text{lateral}} = -\nu \epsilon = -0.32 \times 2 \times 10^{-4} = -6.4 \times 10^{-5}
\]
\[
\text{Change in area, } \Delta A = A \times \epsilon_{\text{lateral}} = 1 \times 10^{-6} \, \text{m}^2 \times -6.4 \times 10^{-5} = -6.4 \times 10^{-11} \, \text{m}^2
\]
\[
\text{Converted to cm}^2, \Delta A = -6.4 \times 10^{-7} \, \text{cm}^2
\]