\( 40 \) cm
Step 1: Lens Maker's Formula in a Medium The focal length of a lens in a medium is given by the modified lens maker’s formula: \[ \frac{1}{f_m} = \left( \frac{n_{\text{lens}}}{n_{\text{medium}}} - 1 \right) \frac{1}{f} \] where: - \( f_m \) is the focal length in the medium, - \( n_{\text{lens}} = 1.5 \) is the refractive index of the lens, - \( n_{\text{medium}} = 1.3 \) is the refractive index of the medium, - \( f = 20 \) cm is the original focal length in air.
Step 2: Substituting Given Values \[ \frac{1}{f_m} = \left( \frac{1.5}{1.3} - 1 \right) \frac{1}{20} \] \[ = \left( \frac{1.5 - 1.3}{1.3} \right) \frac{1}{20} \] \[ = \left( \frac{0.2}{1.3} \right) \frac{1}{20} \]
Step 3: Solving for \( f_m \) \[ f_m = \frac{20 \times 1.3}{0.2} \] \[ f_m = \frac{26}{0.2} = 65 \text{ cm} \]
Step 4: Verifying the Correct Option Comparing with the given options, the correct answer is: \[ \mathbf{65} \text{ cm} \]
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): An electron in a certain region of uniform magnetic field is moving with constant velocity in a straight line path.
Reason (R): The magnetic field in that region is along the direction of velocity of the electron.
In the light of the above statements, choose the correct answer from the options given below: