Step 1: Using Ohm's law \( J = \frac{E}{\rho} \), where \( J \) is the current density, \( E \) is the electric field, and \( \rho \) is the resistivity.
The resistivity \( \rho \) can be calculated using:
\[
R = \rho \cdot \frac{L}{A}
\]
where \( R = 15 \, \Omega \), \( L = 1.5 \, \text{m} \), and \( A = 3 \times 10^{-7} \, \text{m}^2 \).
\[
\rho = \frac{R \cdot A}{L} = \frac{15 \times 3 \times 10^{-7}}{1.5} = 3 \times 10^{-6} \, \Omega \cdot \text{m}
\]
Now, substituting the values:
\[
J = \frac{21}{3 \times 10^{-6}} = 0.7 \times 10^7 \, \text{A/m}^{-6}
\]
Thus, the current density is \( \boxed{0.7 \times 10^7 \, \text{A/m}^{-6}} \).
\bigskip