A conducting square loop of side $ L $, mass $ M $, and resistance $ R $ is moving in the $ XY $ plane with its edges parallel to the $ X $ and $ Y $ axes. The region $ y \geq 0 $ has a uniform magnetic field, $ \vec{B} = B_0 \hat{k} $. The magnetic field is zero everywhere else. At time $ t = 0 $, the loop starts to enter the magnetic field with an initial velocity $ v_0 \hat{j} \, \text{m/s} $, as shown in the figure. Considering the quantity $ K = \frac{B_0^2 L^2}{RM} $ in appropriate units, ignoring self-inductance of the loop and gravity, which of the following statements is/are correct:
If \( v_0 = 3KL \), the complete loop enters inside the region of magnetic field at time \( t = \left(\frac{1}{K}\right) \ln\left(\frac{3}{2}\right) \).
Background Physics:
Derivation of Equation of Motion
Let \( y \) be the distance the loop has entered the magnetic field at time \( t \).
Statement A: If \( v_0 = 1.5KL \), the loop will stop before entering completely into the field.
We know that as \( t \to \infty \), \( y(t) \to \frac{v_0}{K} \). For \( v_0 = 1.5KL \), we get \( y(\infty) = 1.5L \), so the loop does enter fully. A is incorrect.
Statement B: When the entire loop is inside the magnetic field, the induced emf becomes zero since there's no change in flux. Hence, current and magnetic force also become zero. B is correct.
Statement C: Analyzing the given \( v_0 = \frac{KL}{10} \) at \( t = \frac{1}{K} \ln\left(\frac{5}{2}\right) \):
\[ y(t) = \left(\frac{v_0}{K}\right)\left(1 - e^{-Kt}\right) = \left(\frac{L}{10}\right)\left(1 - \frac{2}{5}\right) = \frac{L}{10} \cdot \frac{3}{5} = \frac{3L}{50} \]
This is far less than \( L \), so the loop has barely entered. C is incorrect.
Statement D: To find when \( y(t) = L \), set:
\[ L = \left(\frac{3KL}{K}\right)\left(1 - e^{-Kt}\right) = 3L(1 - e^{-Kt}) \Rightarrow \frac{1}{3} = 1 - e^{-Kt} \Rightarrow e^{-Kt} = \frac{2}{3} \]
\[ \Rightarrow t = \frac{1}{K} \ln\left(\frac{3}{2}\right) \]
Thus, D is correct.

As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is