From Faraday's law of electromagnetic induction the induced emf is equal to negative rate of change of magnetic flux.
That is $e=-\frac{\Delta \phi}{\Delta t}$
Flux induced $=2 B A \cos \phi$
where $B$ is magnetic field, $A$ is area.
Given,
$\theta=0^{\circ}, \Delta t=\frac{1}{100} s$
$\Delta \phi=2 \times 0.01 \times \pi \times(1)^{2} \times 200 \times \cos 0^{\circ}$
$\therefore \quad e=\frac{-2 \times 0.01 \times \pi \times(1)^{2} \times 200}{100}$
$=-4 \pi$ Volt
Circumference of a circle of radius $r$ is $2 \pi r$.
$\therefore$ Induced electric field $E$ is
$E=\frac{|e|}{2 \pi r}=\frac{4 \pi}{2 \pi r}=\frac{2}{1}=2\, V / m$