The formula for the maximum induced emf in a coil rotating in a magnetic field is given by:
\[
\mathcal{E}_{\text{max}} = N A B \omega
\]
Where:
- \( \mathcal{E}_{\text{max}} \) is the maximum induced emf,
- \( N \) is the number of turns of the coil,
- \( A \) is the area of the coil,
- \( B \) is the magnetic field strength,
- \( \omega \) is the angular velocity of the coil.
Given:
- \( N = 100 \) turns,
- \( A = 0.10 \, \text{m}^2 \),
- \( B = 0.01 \, \text{T} \),
- The coil makes 2 rotations per second, so \( \omega = 2\pi \times 2 = 4\pi \, \text{rad/s} \).
Substitute these values into the formula:
\[
\mathcal{E}_{\text{max}} = 100 \times 0.10 \times 0.01 \times 4\pi
\]
\[
\mathcal{E}_{\text{max}} = 100 \times 0.10 \times 0.01 \times 12.566
\]
\[
\mathcal{E}_{\text{max}} = 1.256 \, \text{V}
\]
Thus, the correct answer is 1.256 V.