Applying Biot-Savart Law and Ampere’s Law
- The magnetic field at the center \( O \) of the circular loop is given by: \[ B_{\text{loop}} = \frac{\mu_0 I_{\text{loop}}}{2R} \] where \( I_{\text{loop}} = 1.0 A \), \( R = 10 \) cm = 0.1 m.
\[ B_{\text{loop}} = \frac{(4\pi \times 10^{-7}) (1)}{2 \times 0.1} \] \[ B_{\text{loop}} = 2 \times 10^{-6} \text{ T} \] - The magnetic field due to the long straight wire at distance \( d = 20 \) cm is: \[ B_{\text{wire}} = \frac{\mu_0 I_{\text{wire}}}{2\pi d} \] \[ B_{\text{wire}} = \frac{(4\pi \times 10^{-7}) I_{\text{wire}}}{2\pi \times 0.2} \] \[ B_{\text{wire}} = \frac{2 \times 10^{-7} I_{\text{wire}}}{0.2} \] \[ B_{\text{wire}} = 10^{-6} I_{\text{wire}} \] - For net magnetic field at \( O \) to be zero: \[ B_{\text{loop}} = B_{\text{wire}} \] \[ 2 \times 10^{-6} = 10^{-6} I_{\text{wire}} \] \[ I_{\text{wire}} = 2 A \] Direction of Current in the Wire:
- Using the Right-Hand Rule, the circular loop produces a magnetic field into the plane at O.
- To cancel it, the wire must produce a magnetic field out of the plane at O.
- This happens when current in the wire flows in the negative x-direction.
Thus, the required current in the wire is 2 A, flowing in the negative x-direction.