\(√R\)
\(R^{\frac{3}{2}}\)
\(R^{2}\)
Magnetic Flux Linked with Loop B
Step 1: Magnetic Field Due to Loop A
- The magnetic field \( B \) at the center of a circular loop carrying a current \( I \) is given by the formula: \[ B = \frac{\mu_0 I}{2R} \] where:
- \( R \) = radius of loop A,
- \( \mu_0 \) = permeability of free space.
Step 2: Magnetic Flux Linked with Loop B
- The magnetic flux \( \Phi_B \) linked with loop B is given by: \[ \Phi_B = B \times A_B \] where:
- \( A_B = \pi r^2 \) is the area of loop B,
- \( r = \frac{R}{20} \) is the radius of loop B. Thus, \[ \Phi_B = \left( \frac{\mu_0 I}{2R} \right) \times \pi \left( \frac{R}{20} \right)^2 \] Simplifying: \[ \Phi_B = \frac{\mu_0 I \pi R^2}{2R \times 400} = \frac{\mu_0 I \pi R}{800} \] Thus, the magnetic flux linked with loop B is directly proportional to \( R \).
Step 3: Conclusion
The magnetic flux linked with loop B is proportional to \( R \), so the correct answer is: \[ \boxed{(A) \, R} \]
Commodities | 2009-10 | 2010-11 | 2015-16 | 2016-17 |
---|---|---|---|---|
Agriculture and allied products | 10.0 | 9.9 | 12.6 | 12.3 |
Ore and minerals | 4.9 | 4.0 | 1.6 | 1.9 |
Manufactured goods | 67.4 | 68.0 | 72.9 | 73.6 |
Crude and petroleum products | 16.2 | 16.8 | 11.9 | 11.7 |
Other commodities | 1.5 | 1.2 | 1.1 | 0.5 |
Categories of Reporting Area | As a percentage of total cultivable land (1950-51) | As a percentage of total cultivable land (2014-15) | Area (1950-51) | Area (2014-15) |
---|---|---|---|---|
Culturable waste land | 8.0 | 4.0 | 13.4 | 6.8 |
Fallow other than current fallow | 6.1 | 3.6 | 10.2 | 6.2 |
Current fallow | 3.7 | 4.9 | 6.2 | 8.4 |
Net area sown | 41.7 | 45.5 | 70.0 | 78.4 |
Total Cultivable Land | 59.5 | 58.0 | 100.00 | 100.00 |