\(√R\)
\(R^{\frac{3}{2}}\)
\(R^{2}\)
Magnetic Flux Linked with Loop B
Step 1: Magnetic Field Due to Loop A
- The magnetic field \( B \) at the center of a circular loop carrying a current \( I \) is given by the formula: \[ B = \frac{\mu_0 I}{2R} \] where:
- \( R \) = radius of loop A,
- \( \mu_0 \) = permeability of free space.
Step 2: Magnetic Flux Linked with Loop B
- The magnetic flux \( \Phi_B \) linked with loop B is given by: \[ \Phi_B = B \times A_B \] where:
- \( A_B = \pi r^2 \) is the area of loop B,
- \( r = \frac{R}{20} \) is the radius of loop B. Thus, \[ \Phi_B = \left( \frac{\mu_0 I}{2R} \right) \times \pi \left( \frac{R}{20} \right)^2 \] Simplifying: \[ \Phi_B = \frac{\mu_0 I \pi R^2}{2R \times 400} = \frac{\mu_0 I \pi R}{800} \] Thus, the magnetic flux linked with loop B is directly proportional to \( R \).
Step 3: Conclusion
The magnetic flux linked with loop B is proportional to \( R \), so the correct answer is: \[ \boxed{(A) \, R} \]
Two long parallel wires X and Y, separated by a distance of 6 cm, carry currents of 5 A and 4 A, respectively, in opposite directions as shown in the figure. Magnitude of the resultant magnetic field at point P at a distance of 4 cm from wire Y is \( 3 \times 10^{-5} \) T. The value of \( x \), which represents the distance of point P from wire X, is ______ cm. (Take permeability of free space as \( \mu_0 = 4\pi \times 10^{-7} \) SI units.) 
A particle of charge $ q $, mass $ m $, and kinetic energy $ E $ enters in a magnetic field perpendicular to its velocity and undergoes a circular arc of radius $ r $. Which of the following curves represents the variation of $ r $ with $ E $?
Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : If oxygen ion (O\(^{-2}\)) and Hydrogen ion (H\(^{+}\)) enter normal to the magnetic field with equal momentum, then the path of O\(^{-2}\) ion has a smaller curvature than that of H\(^{+}\).
Reason R : A proton with same linear momentum as an electron will form a path of smaller radius of curvature on entering a uniform magnetic field perpendicularly.
In the light of the above statements, choose the correct answer from the options given below
