This is a series LR circuit connected to an AC voltage source.
Given values:
Inductance $L = \frac{1}{6\pi}$ H.
Resistance $R = 15 \text{ } \Omega$.
AC voltage $V_{rms} = 100 \text{ V}$ (assuming RMS, as is standard for AC voltage values).
Frequency $f = 60 \text{ Hz}$.
1. Calculate Inductive Reactance ($X_L$):
$X_L = 2\pi fL$.
$X_L = 2\pi \times (60 \text{ Hz}) \times \left(\frac{1}{6\pi} \text{ H}\right)$.
$X_L = 2\pi \times 60 \times \frac{1}{6\pi} = \frac{120\pi}{6\pi} = 20 \text{ } \Omega$.
2. Calculate Impedance ($Z$):
For a series LR circuit, $Z = \sqrt{R^2 + X_L^2}$.
$Z = \sqrt{(15 \text{ } \Omega)^2 + (20 \text{ } \Omega)^2}$.
$Z = \sqrt{225 + 400} = \sqrt{625}$.
$Z = 25 \text{ } \Omega$.
(This is a 3-4-5 Pythagorean triple scaled by 5: $15=3\times 5$, $20=4\times 5$, so $Z=5\times 5=25$).
3. Calculate Current ($I_{rms}$):
$I_{rms} = \frac{V_{rms}}{Z}$.
$I_{rms} = \frac{100 \text{ V}}{25 \text{ } \Omega} = 4 \text{ A}$.
4. Calculate Phase Difference ($\phi$):
The phase difference $\phi$ between voltage and current in a series LR circuit is given by $\tan\phi = \frac{X_L}{R}$.
In an LR circuit, voltage leads current (or current lags voltage).
$\tan\phi = \frac{20 \text{ } \Omega}{15 \text{ } \Omega} = \frac{20}{15} = \frac{4}{3}$.
So, $\phi = \tan^{-1}\left(\frac{4}{3}\right)$.
The current in the circuit is 4 A and the phase difference is $\tan^{-1}\left(\frac{4}{3}\right)$.
This matches option (c).
\[ \boxed{\text{4 A and } \tan^{-1}\left(\frac{4}{3}\right)} \]