Question:

A circle is inscribed in an equilateral triangle with side length 12 cm. What is the radius of the circle? 
 

Show Hint

For an equilateral triangle, memorize $r = \frac{a\sqrt{3}}{6}$ for quick inradius calculation.
Updated On: Aug 1, 2025
  • $2\sqrt{3}$ cm
  • $3\sqrt{3}$ cm
  • $4\sqrt{3}$ cm
  • $6\sqrt{3}$ cm 
     

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


- Step 1: Inradius formula for equilateral triangle - $r = \frac{a\sqrt{3}}{6}$. 

- Step 2: Substitute - $a=12$: \[ r = \frac{12\sqrt{3}}{6} = 2\sqrt{3} \ \text{cm} \] 

- Step 3: Alternate check using area and semiperimeter

Area = $\frac{\sqrt{3}}{4} \times 12^2 = 36\sqrt{3}$ cm². 

Semiperimeter $s = \frac{3\times 12}{2} = 18$ cm. 

Then $r = \frac{\text{Area}}{s} = \frac{36\sqrt{3}}{18} = 2\sqrt{3}$. 
 

Was this answer helpful?
0
0

Top Questions on Number Systems

View More Questions