The compound interest formula is:
\[ A = P \left(1 + \frac{r}{100} \right)^t \]
Using the compound interest formula for two different time periods:
\[ \frac{A_2}{A_1} = \left(1 + \frac{r}{100} \right)^{6-3} \]
Substituting the values:
\[ \frac{32,768}{13,824} = \left(1 + \frac{r}{100} \right)^3 \]
Calculating the ratio:
\[ 2.37 = \left(1 + \frac{r}{100} \right)^3 \]
Taking the cube root on both sides:
\[ 1 + \frac{r}{100} = 1.333 \]
Solving for \( r \):
\[ r = (1.333 - 1) \times 100 = 33.33\% \]
Thus, the rate of interest is 33.33% (Option D).