We can use the relation for the compressibility factor \( Z \) of a real gas: \[ Z = \frac{PV}{nRT}. \] Given the compressibility factor, we can modify the ideal gas equation: \[ V = \frac{ZnRT}{P}. \] For two different states of the gas, we can set up the following equation: \[ \frac{V_2}{V_1} = \frac{Z_2 P_1 T_1}{Z_1 P_2 T_2}. \] Given values:
Substitute these values into the equation: \[ V_2 = V_1 \times \frac{Z_2 P_1 T_1}{Z_1 P_2 T_2}. \] \[ V_2 = 0.15 \times \frac{1.4 \times 100 \times 500}{1.07 \times 300 \times 300}. \] \[ V_2 \approx 0.15 \times \frac{70000}{96300} \approx 0.1089 \, \text{dm}^3. \] \[ V_2 \approx 108.9 \times 10^{-3} \, \text{dm}^3. \] Thus, the volume of the gas at 300 atm and 300 K is approximately \( 108.9 \times 10^{-3} \, \text{dm}^3 \)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: