Given:
- \( E = 2 \, \text{V} \) (emf of the cell),
- Current \( I = 200 \, \text{mA} = 0.2 \, \text{A} \),
- Terminal voltage \( V = 87.5\% \) of the emf, so \( V = 0.875 \times E = 0.875 \times 2 = 1.75 \, \text{V} \).
Using the formula for terminal voltage:
\[
V = E - I \times r
\]
Substitute the given values:
\[
1.75 = 2 - 0.2 \times r
\]
Solve for \( r \):
\[
0.2 \times r = 2 - 1.75 = 0.25 \quad \Rightarrow \quad r = \frac{0.25}{0.2} = 1.25 \, \Omega
\]
Thus, the internal resistance of the cell is \( 1.25 \, \Omega \).