For a galvanic cell at standard state, \(\Delta G^\circ = -n F E^\circ_{\text{cell}}\) and \(\Delta G^\circ = -RT \ln K\). Hence, \(K = \exp\!\left(\dfrac{n F E^\circ_{\text{cell}}}{RT}\right)\).
Given: \(E^\circ_{\text{cell}} = 1.1~\text{V},~T = 298~\text{K},~F = 96485~\text{C mol}^{-1},~R = 8.314~\text{J mol}^{-1}\text{K}^{-1}\).
Overall reaction involves transfer of \(n = 2\) electrons.
Step 1: Calculate standard Gibbs energy change.
\[
\Delta G^\circ = -n F E^\circ_{\text{cell}}
= -(2)(96485)(1.1)~\text{J mol}^{-1}
= -2.12267\times 10^{5}~\text{J mol}^{-1}
= \boxed{-2.12\times 10^{5}~\text{J mol}^{-1} \; (= -2.12\times 10^{2}~\text{kJ mol}^{-1})}
\]
Step 2: Calculate equilibrium constant.
\[
K = \exp\!\left(\frac{n F E^\circ_{\text{cell}}}{RT}\right)
= \exp\!\left(\frac{(2)(96485)(1.1)}{(8.314)(298)}\right)
= \exp(85.65)
\]
\[
\Rightarrow \ \log_{10}K = \frac{85.65}{2.3026} = 37.20 \ \Rightarrow \
\boxed{K \approx 1.6 \times 10^{37}}
\]
Answer: \(\boxed{\Delta G^\circ \approx -2.12 \times 10^{5}~\text{J mol}^{-1} = -212~\text{kJ mol}^{-1}, \quad K \approx 1.6\times 10^{37}}\).