Given:
\[m = 800 \, \text{kg}, \quad r = 300 \, \text{m}, \quad \theta = 30^\circ, \quad \mu = 0.2\]
The maximum speed \( V_{\text{max}} \) for safe negotiation of the turn is given by:
\[V_{\text{max}} = \sqrt{r g \frac{\tan \theta + \mu}{1 - \mu \tan \theta}}\]
Substitute the values:
\[V_{\text{max}} = \sqrt{300 \times 10 \times \frac{\tan 30^\circ + 0.2}{1 - 0.2 \times \tan 30^\circ}}\]
\[= \sqrt{300 \times 10 \times \frac{0.57 + 0.2}{1 - 0.2 \times 0.57}}\]
\[= \sqrt{3000 \times \frac{0.77}{0.886}}\]
\[36\]
\[V_{\text{max}} = 51.4 \, \text{m/s}\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: