Given:
\[m = 800 \, \text{kg}, \quad r = 300 \, \text{m}, \quad \theta = 30^\circ, \quad \mu = 0.2\]
The maximum speed \( V_{\text{max}} \) for safe negotiation of the turn is given by:
\[V_{\text{max}} = \sqrt{r g \frac{\tan \theta + \mu}{1 - \mu \tan \theta}}\]
Substitute the values:
\[V_{\text{max}} = \sqrt{300 \times 10 \times \frac{\tan 30^\circ + 0.2}{1 - 0.2 \times \tan 30^\circ}}\]
\[= \sqrt{300 \times 10 \times \frac{0.57 + 0.2}{1 - 0.2 \times 0.57}}\]
\[= \sqrt{3000 \times \frac{0.77}{0.886}}\]
\[36\]
\[V_{\text{max}} = 51.4 \, \text{m/s}\]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).