The capillary rise in a tube is given by the formula:
\[
h = \frac{2T \cos \theta}{r \rho g}
\]
Where:
- \( h = 2 \, \text{cm} = 0.02 \, \text{m} \),
- \( T = 0.072 \, \text{N/m} \) (surface tension),
- \( r = 0.1 \, \text{mm} = 1 \times 10^{-4} \, \text{m} \),
- \( \rho \) is the density of water (approximately \( 1000 \, \text{kg/m}^3 \)),
- \( g = 9.8 \, \text{m/s}^2 \) (acceleration due to gravity),
- \( \theta \) is the contact angle.
Substitute the known values and solve for \( \cos \theta \):
\[
\cos \theta = \frac{r \rho g h}{2T}
\]
Substituting the values:
\[
\cos \theta = \frac{(1 \times 10^{-4}) \times (1000) \times (9.8) \times (0.02)}{2 \times 0.072} \approx \frac{1.96}{0.144} \approx 0.75
\]
Thus, the contact angle is:
\[
\boxed{\cos^{-1} \left( \frac{1}{7.2} \right)}
\]