A bullet of mass \(10^{-2}\) kg and velocity \(200\) m/s gets embedded inside the bob of mass \(1\) kg of a simple pendulum. The maximum height that the system rises by is_____ cm.
The Correct Answer is : 20
Momentum conservation :
\(10^{-2} \times 200 ≃ 1 × v …(1)\)
Energy conservation :
v\(=\sqrt{2gh}\ \ \ ....(2)\)
\(⇒h=\frac{v^2}{2g}\)
\(=\frac{4}{20}m=20cm\)

From a height of 'h' above the ground, a ball is projected up at an angle \( 30^\circ \) with the horizontal. If the ball strikes the ground with a speed of 1.25 times its initial speed of \( 40 \ ms^{-1} \), the value of 'h' is:

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
We can note there involves a continuous interchange of potential and kinetic energy in a simple harmonic motion. The system that performs simple harmonic motion is called the harmonic oscillator.
Case 1: When the potential energy is zero, and the kinetic energy is a maximum at the equilibrium point where maximum displacement takes place.
Case 2: When the potential energy is maximum, and the kinetic energy is zero, at a maximum displacement point from the equilibrium point.
Case 3: The motion of the oscillating body has different values of potential and kinetic energy at other points.