The tension in the string provides the centripetal force, which is given by:
\[
T = \frac{m v^2}{r}
\]
where \( T = 2.25 \, \text{N} \), \( m = 90 \, \text{g} = 0.09 \, \text{kg} \), and \( r = 1 \, \text{m} \).
Solving for \( v \):
\[
v = \sqrt{\frac{T r}{m}} = \sqrt{\frac{2.25 \times 1}{0.09}} = 5 \, \text{m/s}
\]
Thus, the permissible maximum velocity is 5 m/s.