Using the Work-Energy Theorem (W.E.T.) from point A to point B:
1. Apply W.E.T. from A to B:
\[ W_{mg} = K_B - K_A. \] Since the body starts from rest at A, \( K_A = 0 \). Thus,
\[ mg \times \left( \frac{R}{\sqrt{2}} + R \right) = \frac{1}{2} mv_B^2. \]
2. Substitute Values and Solve for \( v_B \):
Simplifying, we get:
\[ mgR \frac{(\sqrt{2} + 1)}{\sqrt{2}} = \frac{1}{2} mv_B^2. \] Solving for \( v_B \), we find:
\[ v_B = \sqrt{\frac{2gR(\sqrt{2} + 1)}{\sqrt{2}}}. \] Substitute \( g = 10 \, \text{m/s}^2 \), \( R = 14 \, \text{m} \), and \( \sqrt{2} = 1.4 \):
\[ v_B = \sqrt{\frac{2 \times 10 \times 14 \times 2.4}{1.4}} = 21.9 \, \text{m/s}. \]
Answer: 21.9 m/s
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: