Using the Work-Energy Theorem (W.E.T.) from point A to point B:
1. Apply W.E.T. from A to B:
\[ W_{mg} = K_B - K_A. \] Since the body starts from rest at A, \( K_A = 0 \). Thus,
\[ mg \times \left( \frac{R}{\sqrt{2}} + R \right) = \frac{1}{2} mv_B^2. \]
2. Substitute Values and Solve for \( v_B \):
Simplifying, we get:
\[ mgR \frac{(\sqrt{2} + 1)}{\sqrt{2}} = \frac{1}{2} mv_B^2. \] Solving for \( v_B \), we find:
\[ v_B = \sqrt{\frac{2gR(\sqrt{2} + 1)}{\sqrt{2}}}. \] Substitute \( g = 10 \, \text{m/s}^2 \), \( R = 14 \, \text{m} \), and \( \sqrt{2} = 1.4 \):
\[ v_B = \sqrt{\frac{2 \times 10 \times 14 \times 2.4}{1.4}} = 21.9 \, \text{m/s}. \]
Answer: 21.9 m/s
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).