For fundamental frequency:
\[
f = \frac{1}{2L} \sqrt{\frac{T}{\mu}}, \quad \mu = \frac{m}{L}
\]
Given: \( f = 100 \), \( L = 1 \), \( m = 2 \, \text{g} = 2 \times 10^{-3} \, \text{kg} \), let tension \( T = Mg \)
\[
100 = \frac{1}{2} \sqrt{\frac{Mg}{\mu}} = \frac{1}{2} \sqrt{\frac{M \cdot 10}{2 \times 10^{-3}}}
\Rightarrow 200 = \sqrt{\frac{10M}{2 \times 10^{-3}}}
\Rightarrow 200^2 = \frac{10M}{2 \times 10^{-3}} \Rightarrow M = 8 \, \text{kg}
\]