Step 1: Determine the total distance fallen in 5 seconds.
Using the formula for distance travelled under gravity: \[ s = \frac{1}{2}gt^2 = \frac{1}{2}(9.8 \, {m/s}^2)(5^2) = 122.5 \, {m} \] Step 2: Determine the distance fallen in the first 3 seconds. \[ s_1 = \frac{1}{2}(9.8 \, {m/s}^2)(3^2) = 44.1 \, {m} \] Step 3: Calculate the distance in the last two seconds. \[ s_2 = s - s_1 = 122.5 \, {m} - 44.1 \, {m} = 78.4 \, {m} \]
To solve the problem, we need to calculate the distance traveled by a body falling freely under gravity in the last two seconds of its motion.
1. Understanding the Problem:
The body falls freely under gravity, meaning its motion follows the equations of uniformly accelerated motion. The total time given is 5 seconds, and we are interested in the distance traveled during the last 2 seconds of this motion.
2. Using the Kinematic Equation:
The kinematic equation for distance traveled under uniform acceleration (gravity) is:
3. Conclusion:
The distance traveled by the body in the last 2 seconds of its motion is 78.4 meters.
Final Answer:
The correct answer is (D) 78.4 m.
A bead P sliding on a frictionless semi-circular string... bead Q ejected... relation between $t_P$ and $t_Q$ is 
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))