There are two external forces on the bob : gravity $ (mg) $ and tension $ (T) $ in the string. The tension does no work as displacement is always perpendicular to the string. Total mechanical energy $ (E) $ of the system is conserved.
If we take potential energy of the system to be zero at the lowest point $ A $ , then
At $ A $ , $ E = \frac{1}{2}mv^{2}_{0} \quad\cdots\left(i\right) $
From Newtons second law
$ T_{A} - mg = \frac{mv^{2}_{0}}{L}\quad\cdots\left(ii\right) $
where $ T_{A} $ is the tension in the string at $ A $ .
At the highest point $ C $ , to complete the circle tension in string will be minimum (zero).
At $ C $ , $ E = \frac{1}{2}mv^{2}_{C}+mg\left(2L\right)\quad\cdots\left(iii\right) $
From Newtons second law
$ mg = \frac{mv_{C}^{2}}{L}\quad\quad\left(iv\right) $
From $ \left(iv\right), v_{C} =\sqrt{gL} $ ; $ C-q $
From $ \left(iii\right) $ , $ E = \frac{1}{2}m\left(gL\right)+2mgL= \frac{5}{2}mgL \quad\left(v\right) $
Using $ \left(i\right) $ , $ \frac{1}{2}mv^{2}_{0} = \frac{5}{2}mgL $ ,
$ v_{0} = \sqrt{5\,gL} $ ;
$ \therefore A-r\quad\cdots\left(vi\right) $
At $ B $ , $ E =\frac{1}{2}mv^{2}_{B}+mg\left(L\right) $
or $ \frac{1}{2}mv^{2}_{B} = E-mg\left(L\right) $
$ \frac{5}{2}mgL-mgL\quad $ (Using $ \left(v\right) $ )
$ \frac{1}{2} mv^{2}_{B} = \frac{3}{2} mgL $
$ \therefore v_{B} = \sqrt{3\,gL} $ ;
$ \therefore B-s $
The ratio of kinetic energies at $ B $ and $ C $ is
$ \therefore \frac{K_{B}}{K_{C}} = \frac{\frac{1}{2}mv^{2}_{B}}{\frac{1}{2}mv^{2}_{C}} $
$ = \frac{3gL}{gL} = \frac{3}{1} $ ;
$ \therefore D-p $