15 J
5 J
Given:
Mass of ball, \( m = 100\,g = 0.1\,kg \)
Velocity, \( v = 20\,m/s \)
Angle with horizontal = \( 60^\circ \)
\[ K_i = \frac{1}{2} m v^2 \]
After the vertical component becomes zero, only the horizontal component \( v \cos 60^\circ \) remains. \[ K_f = \frac{1}{2} m (v \cos 60^\circ)^2 = \frac{1}{2} m \left( \frac{v}{2} \right)^2 = \frac{1}{8} m v^2 \]
\[ \Delta K = K_i - K_f = \frac{1}{2} m v^2 - \frac{1}{8} m v^2 = \frac{3}{8} m v^2 \] Substitute values: \[ \Delta K = \frac{3}{8} \times 0.1 \times (20)^2 = \frac{3}{8} \times 0.1 \times 400 = 15\,J \]
Decrease in kinetic energy = 15 J
✅ Correct Option: (2)
Step 1: Write given data.
\[ m = 100\,\text{g} = 0.1\,\text{kg}, \quad u = 20\,\text{m/s}, \quad \theta = 60^\circ. \]
Step 2: Separate velocity components.
\[ u_x = u \cos\theta = 20 \cos 60^\circ = 20 \times \frac{1}{2} = 10\,\text{m/s}, \] \[ u_y = u \sin\theta = 20 \sin 60^\circ = 20 \times \frac{\sqrt{3}}{2} = 10\sqrt{3}\,\text{m/s}. \]
Step 3: Kinetic energy at the point of projection.
\[ K_1 = \frac{1}{2} m u^2 = \frac{1}{2} \times 0.1 \times (20)^2 = 0.05 \times 400 = 20\,\text{J}. \]
Step 4: Kinetic energy at the highest point.
At the highest point, the vertical velocity becomes zero (\( v_y = 0 \)), so only horizontal velocity remains: \[ v = u_x = 10\,\text{m/s}. \] \[ K_2 = \frac{1}{2} m v^2 = \frac{1}{2} \times 0.1 \times (10)^2 = 0.05 \times 100 = 5\,\text{J}. \]
Step 5: Decrease in kinetic energy.
\[ \Delta K = K_1 - K_2 = 20 - 5 = 15\,\text{J}. \]
Wait! Let’s check: the question asks for “decrease in kinetic energy” — that is the difference \( K_1 - K_2 = 15\,\text{J} \). Hence the correct answer should be 15 J
\[ \boxed{\text{Decrease in kinetic energy} = 15\,\text{J}} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: