Question:

A ball of mass 1.2 kg moving with a velocity of 12 ms1^{-1} makes a one-dimensional collision with another stationary ball of mass 1.2 kg. If the coefficient of restitution is 12 \frac{1}{\sqrt{2}} , then the ratio of the total kinetic energy of the balls after the collision to the initial kinetic energy is

Show Hint

In a one-dimensional collision, the coefficient of restitution (e) determines how much velocity is retained after impact. Using momentum conservation and restitution formulas, we can calculate the final velocities and then find the kinetic energy ratio.
Updated On: Mar 11, 2025
  • 34 \frac{3}{4}
  • 1:1
  • 2:3
  • 3:5 \bigskip
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We are given: - Mass of both balls: m1=m2=1.2 m_1 = m_2 = 1.2 kg. - Initial velocity of first ball: u1=12 u_1 = 12 ms1^{-1}. - Initial velocity of second ball: u2=0 u_2 = 0 (stationary). - Coefficient of restitution: e=12. e = \frac{1}{\sqrt{2}}. We need to find the ratio of total kinetic energy after collision to initial kinetic energy. --- Step 1: Apply Velocity Formula after Collision Using the velocity equations for elastic collisions: v1=(m1em2)u1+m2(1+e)u2m1+m2 v_1 = \frac{(m_1 - e m_2) u_1 + m_2 (1 + e) u_2}{m_1 + m_2} v2=(m2em1)u2+m1(1+e)u1m1+m2. v_2 = \frac{(m_2 - e m_1) u_2 + m_1 (1 + e) u_1}{m_1 + m_2}. Since m1=m2 m_1 = m_2 , simplifying: v1=(1e)u12, v_1 = \frac{(1 - e) u_1}{2}, v2=(1+e)u12. v_2 = \frac{(1 + e) u_1}{2}. Substituting e=12 e = \frac{1}{\sqrt{2}} : v1=(112)122, v_1 = \frac{\left(1 - \frac{1}{\sqrt{2}}\right) 12}{2}, v2=(1+12)122. v_2 = \frac{\left(1 + \frac{1}{\sqrt{2}}\right) 12}{2}. Approximating 120.707 \frac{1}{\sqrt{2}} \approx 0.707 : v1=(10.707)×122=(0.293)×122=3.51621.758 m/s. v_1 = \frac{(1 - 0.707) \times 12}{2} = \frac{(0.293) \times 12}{2} = \frac{3.516}{2} \approx 1.758 \text{ m/s}. v2=(1+0.707)×122=(1.707)×122=20.484210.242 m/s. v_2 = \frac{(1 + 0.707) \times 12}{2} = \frac{(1.707) \times 12}{2} = \frac{20.484}{2} \approx 10.242 \text{ m/s}. --- Step 2: Compute Initial and Final Kinetic Energies # Initial Kinetic Energy: KEinitial=12m1u12=12×1.2×(12)2. KE_{\text{initial}} = \frac{1}{2} m_1 u_1^2 = \frac{1}{2} \times 1.2 \times (12)^2. =1.2×1442=172.82=86.4 J. = \frac{1.2 \times 144}{2} = \frac{172.8}{2} = 86.4 \text{ J}. # Final Kinetic Energy: KEfinal=12m1v12+12m2v22. KE_{\text{final}} = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2. =12×1.2×(1.758)2+12×1.2×(10.242)2. = \frac{1}{2} \times 1.2 \times (1.758)^2 + \frac{1}{2} \times 1.2 \times (10.242)^2. =1.22×(3.09+104.91). = \frac{1.2}{2} \times (3.09 + 104.91). =0.6×108=64.8 J. = 0.6 \times 108 = 64.8 \text{ J}. --- Step 3: Compute the Ratio KEfinalKEinitial=64.886.4=34. \frac{KE_{\text{final}}}{KE_{\text{initial}}} = \frac{64.8}{86.4} = \frac{3}{4}. Thus, the correct answer is: 34 \boxed{\frac{3}{4}} which matches option (1).
Was this answer helpful?
0
0

Questions Asked in TS EAMCET exam

View More Questions