We are given:
- Mass of both balls: \( m_1 = m_2 = 1.2 \) kg.
- Initial velocity of first ball: \( u_1 = 12 \) ms\(^{-1}\).
- Initial velocity of second ball: \( u_2 = 0 \) (stationary).
- Coefficient of restitution:
\[
e = \frac{1}{\sqrt{2}}.
\]
We need to find the ratio of total kinetic energy after collision to initial kinetic energy.
---
Step 1: Apply Velocity Formula after Collision
Using the velocity equations for elastic collisions:
\[
v_1 = \frac{(m_1 - e m_2) u_1 + m_2 (1 + e) u_2}{m_1 + m_2}
\]
\[
v_2 = \frac{(m_2 - e m_1) u_2 + m_1 (1 + e) u_1}{m_1 + m_2}.
\]
Since \( m_1 = m_2 \), simplifying:
\[
v_1 = \frac{(1 - e) u_1}{2},
\]
\[
v_2 = \frac{(1 + e) u_1}{2}.
\]
Substituting \( e = \frac{1}{\sqrt{2}} \):
\[
v_1 = \frac{\left(1 - \frac{1}{\sqrt{2}}\right) 12}{2},
\]
\[
v_2 = \frac{\left(1 + \frac{1}{\sqrt{2}}\right) 12}{2}.
\]
Approximating \( \frac{1}{\sqrt{2}} \approx 0.707 \):
\[
v_1 = \frac{(1 - 0.707) \times 12}{2} = \frac{(0.293) \times 12}{2} = \frac{3.516}{2} \approx 1.758 \text{ m/s}.
\]
\[
v_2 = \frac{(1 + 0.707) \times 12}{2} = \frac{(1.707) \times 12}{2} = \frac{20.484}{2} \approx 10.242 \text{ m/s}.
\]
---
Step 2: Compute Initial and Final Kinetic Energies
# Initial Kinetic Energy:
\[
KE_{\text{initial}} = \frac{1}{2} m_1 u_1^2 = \frac{1}{2} \times 1.2 \times (12)^2.
\]
\[
= \frac{1.2 \times 144}{2} = \frac{172.8}{2} = 86.4 \text{ J}.
\]
# Final Kinetic Energy:
\[
KE_{\text{final}} = \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2.
\]
\[
= \frac{1}{2} \times 1.2 \times (1.758)^2 + \frac{1}{2} \times 1.2 \times (10.242)^2.
\]
\[
= \frac{1.2}{2} \times (3.09 + 104.91).
\]
\[
= 0.6 \times 108 = 64.8 \text{ J}.
\]
---
Step 3: Compute the Ratio
\[
\frac{KE_{\text{final}}}{KE_{\text{initial}}} = \frac{64.8}{86.4} = \frac{3}{4}.
\]
Thus, the correct answer is:
\[
\boxed{\frac{3}{4}}
\]
which matches option (1).